Question 1. Consider Bohr's model of a one-electron atom where the electron moves around the nucleus. In the following, List-I contains some quantities for the nth orbit of the atom and List-II contains options showing how they depend on n.

	List I		List II
(I)	Radius of the n th orbit	(P)	∝ n-2
(II)	Angular momentum of the electron in the n th orbit	(Q)	∝ n ^{.1}
(III)	Kinetic energy of the electron in the n th orbit	(R)	∝ nº
(IV)	Potential energy of the electron in the n th orbit	(S)	∝ n¹
		(T)	$\propto n^2$
		(U)	∝ n ^{1/2}

Which of the following options has the correct combination considering List-I and List-II?

A. (I), (T)

B. (II), (R)

C. (I), (P)

D. (II), (Q)

Solution: (A)

 $r = 0.59 \times n^2 / z \Rightarrow r \propto n^2 \Rightarrow (I)(T)$

 $mvr = nh / 2\pi \Rightarrow (mvr) \propto n \Rightarrow (II)(S)$

 $\mathsf{K} \mathsf{E} = 13.6 \times z^2 / n^2 \Rightarrow \mathsf{K} \mathsf{E} \propto n^{\cdot 2} \Rightarrow \mathsf{(III)}(\mathsf{P})$

 $P E = -2 \times 13.6 \times z^2 / n^2 \Rightarrow P E \propto n^{-2} \Rightarrow (IV)(P)$